Please check the examination deta	ails below	before enter	
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre	Number	Candidate Number
Wednesday 8	Ja	nuai	ry 2020
Morning (Time: 1 hour 30 minute	es)	Paper Re	eference WMA11/01
Mathematics			
International Advance Pure Mathematics P1	d Suk	sidiary	//Advanced Level
You must have: Mathematical Formulae and Sta	tistical 7	ābles (Lila	Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 11 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1. Find, in simplest form,	$\int \left(\frac{8x^3}{3} - \frac{1}{2\sqrt{x}} - 5\right) \mathrm{d}x$	(4)

	Leave blank
Question 1 continued	
	Q1
(Total 4 marks)	

2. Given $y = 3^x$, express each of the following in terms of y. Write each expression in its simplest form.

(1)

(b)
$$\frac{1}{3^{x-2}}$$

(2)

(c)
$$\frac{81}{9^{2-3x}}$$

(2)

4

Question 2 continued	Leave blank
	Q2
(Total 5 marks)	

3.

Figure 1

Figure 1 shows part of the curve with equation $y = x^2 + 3x - 2$

The point P(3,16) lies on the curve.

(a) Find the gradient of the tangent to the curve at P.

(2)

The point Q with x coordinate 3 + h also lies on the curve.

- (b) Find, in terms of h, the gradient of the line PQ. Write your answer in simplest form. (3)
- (c) Explain briefly the relationship between the answer to (b) and the answer to (a). (1)

Question 3 continued		blank
		O2
		Q3
	(Total 6 marks)	

4.

Figure 2

Figure 2 shows the plan view of a house ABCD and a lawn APCDA.

ABCD is a rectangle with $AB = 16 \,\mathrm{m}$.

APCOA is a sector of a circle centre O with radius 12 m.

The point O lies on the line DC, as shown in Figure 2.

(a) Show that the size of angle AOD is 1.231 radians to 3 decimal places.

(2)

The lawn APCDA is shown shaded in Figure 2.

(b) Find the area of the lawn, in m², to one decimal place.

(4)

(c) Find the perimeter of the lawn, in metres, to one decimal place.

(3)

uestion 4 continued	
uestion 4 continued	

Question 4 continued		

Question 4 continued	bl
	Q ²
(Total 9 marks)	

5. (a) Find, using algebra, all solutions of

$$20x^3 - 50x^2 - 30x = 0$$

(3)

(b) Hence find all real solutions of

$$20(y+3)^{\frac{3}{2}} - 50(y+3) - 30(y+3)^{\frac{1}{2}} = 0$$

(4)

Question 5 continued		blank
		Q 5
		23
	(Total 7 marks)	

6. The line l_1 has equation 3x - 4y + 20 = 0

The line l_2 cuts the x-axis at R(8,0) and is parallel to l_1

(a) Find the equation of l_2 , writing your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3)

The line l_1 cuts the x-axis at P and the y-axis at Q.

Given that PQRS is a parallelogram, find

(b) the area of PQRS,

(3)

(c) the coordinates of S.

(2)

	Leave
	blank
Question 6 continued	

Question 6 continued		

Question 6 continued		Leav blanl
		<u>Q6</u>
	(Total 8 marks)	

7.

Figure 3 shows part of the curve C_1 with equation $y = 3\sin x$, where x is measured in degrees.

The point P and the point Q lie on C_1 and are shown in Figure 3.

- (a) State
 - (i) the coordinates of P,
 - (ii) the coordinates of Q.

(3)

A different curve C_2 has equation $y = 3\sin x + k$, where k is a constant.

The curve C_2 has a maximum y value of 10

The point R is the minimum point on C_2 with the smallest positive x coordinate.

(b) State the coordinates of R.

1	7	1
Ţ	_	,

Question 7 continued	blank
	—
	Q7
(T-4-1 5	wka)
(Total 5 mar	rks)

The curve C has equation $y = y^2 + 2y + 11$	
The curve C has equation $y = x^2 + 2x + 11$	
Find the set of values of k for which l does not cross or touch C .	(6

Question 8 continued	Leave blank
	Q8
(Total 6 marks)	

9. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

A curve has equation

$$y = \frac{4x^2 + 9}{2\sqrt{x}} \qquad x > 0$$

Find the x coordinate of the point on the curve at which $\frac{d}{dx}$	$\frac{dy}{dx} = 0$
---	---------------------

Question 9 continued	Leave blank
(Total 6 marks)	Q9

10. The curve C_1 has equation y = f(x), where

$$f(x) = (4x - 3)(x - 5)^2$$

(a) Sketch C_1 showing the coordinates of any point where the curve touches or crosses the coordinate axes.

(3)

- (b) Hence or otherwise
 - (i) find the values of x for which $f\left(\frac{1}{4}x\right) = 0$
 - (ii) find the value of the constant p such that the curve with equation y = f(x) + p passes through the origin.

(2)

A second curve C_2 has equation y = g(x), where g(x) = f(x + 1)

- (c) (i) Find, in simplest form, g(x). You may leave your answer in a factorised form.
 - (ii) Hence, or otherwise, find the y intercept of curve C_2

(3)

uestion 10 continued	

11. A curve has equation y = f(x), where

$$f''(x) = \frac{6}{\sqrt{x^3}} + x \qquad x > 0$$

The point P(4, -50) lies on the curve.

Given that f'(x) = -4 at P,

(a) find the equation of the normal at P, writing your answer in the form y = mx + c, where m and c are constants,

(3)

(b) find f(x).

(8)

estion 11 continued	

	Q	11
(Total 11 marks)		
TOTAL FOR PAPER IS 75 MARKS		
END END		
		×
P 6 0 7 9 6 A 0 2 8 2 8		

Question 11 continued