| Please check the examination deta | ails below | before enter | | |---|------------|--------------|--------------------------| | Candidate surname | | | Other names | | Pearson Edexcel International Advanced Level | Centre | Number | Candidate Number | | Wednesday 8 | Ja | nuai | ry 2020 | | Morning (Time: 1 hour 30 minute | es) | Paper Re | eference WMA11/01 | | Mathematics | | | | | International Advance Pure Mathematics P1 | d Suk | sidiary | //Advanced Level | | You must have:
Mathematical Formulae and Sta | tistical 7 | ābles (Lila | Total Marks | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## **Instructions** - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 11 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. Turn over ▶ | 1. Find, in simplest form, | $\int \left(\frac{8x^3}{3} - \frac{1}{2\sqrt{x}} - 5\right) \mathrm{d}x$ | (4) | |----------------------------|--|-----| Leave
blank | |----------------------|----------------| | Question 1 continued | Q1 | | (Total 4 marks) | | 2. Given $y = 3^x$, express each of the following in terms of y. Write each expression in its simplest form. (1) (b) $$\frac{1}{3^{x-2}}$$ **(2)** (c) $$\frac{81}{9^{2-3x}}$$ **(2)** 4 | Question 2 continued | Leave
blank | |----------------------|----------------| Q2 | | (Total 5 marks) | | 3. Figure 1 Figure 1 shows part of the curve with equation $y = x^2 + 3x - 2$ The point P(3,16) lies on the curve. (a) Find the gradient of the tangent to the curve at P. **(2)** The point Q with x coordinate 3 + h also lies on the curve. - (b) Find, in terms of h, the gradient of the line PQ. Write your answer in simplest form. (3) - (c) Explain briefly the relationship between the answer to (b) and the answer to (a). (1) | Question 3 continued | | blank | |----------------------|-----------------|-------| O2 | | | | Q3 | | | (Total 6 marks) | | 4. Figure 2 Figure 2 shows the plan view of a house ABCD and a lawn APCDA. ABCD is a rectangle with $AB = 16 \,\mathrm{m}$. APCOA is a sector of a circle centre O with radius 12 m. The point O lies on the line DC, as shown in Figure 2. (a) Show that the size of angle AOD is 1.231 radians to 3 decimal places. **(2)** The lawn APCDA is shown shaded in Figure 2. (b) Find the area of the lawn, in m², to one decimal place. **(4)** (c) Find the perimeter of the lawn, in metres, to one decimal place. (3) | uestion 4 continued | | |---------------------|--| | uestion 4 continued | Question 4 continued | | | |----------------------|--|--| Question 4 continued | bl | |----------------------|----------------| Q ² | | (Total 9 marks) | | **5.** (a) Find, using algebra, all solutions of $$20x^3 - 50x^2 - 30x = 0$$ (3) (b) Hence find all real solutions of $$20(y+3)^{\frac{3}{2}} - 50(y+3) - 30(y+3)^{\frac{1}{2}} = 0$$ (4) | Question 5 continued | | blank | |----------------------|-----------------|------------| Q 5 | | | | 23 | | | (Total 7 marks) | | **6.** The line l_1 has equation 3x - 4y + 20 = 0 The line l_2 cuts the x-axis at R(8,0) and is parallel to l_1 (a) Find the equation of l_2 , writing your answer in the form ax + by + c = 0, where a, b and c are integers to be found. (3) The line l_1 cuts the x-axis at P and the y-axis at Q. Given that PQRS is a parallelogram, find (b) the area of PQRS, **(3)** (c) the coordinates of S. **(2)** | | Leave | |----------------------|-------| | | blank | | Question 6 continued | Question 6 continued | | | |----------------------|--|--| Question 6 continued | | Leav
blanl | |----------------------|-----------------|---------------| <u>Q6</u> | | | (Total 8 marks) | | 7. Figure 3 shows part of the curve C_1 with equation $y = 3\sin x$, where x is measured in degrees. The point P and the point Q lie on C_1 and are shown in Figure 3. - (a) State - (i) the coordinates of P, - (ii) the coordinates of Q. (3) A different curve C_2 has equation $y = 3\sin x + k$, where k is a constant. The curve C_2 has a maximum y value of 10 The point R is the minimum point on C_2 with the smallest positive x coordinate. (b) State the coordinates of R. | 1 | 7 | 1 | |---|---|---| | Ţ | _ | , | | Question 7 continued | blank | |----------------------|-------| — | Q7 | | (T-4-1 5 | wka) | | (Total 5 mar | rks) | | The curve C has equation $y = y^2 + 2y + 11$ | | |---|----| | The curve C has equation $y = x^2 + 2x + 11$ | | | Find the set of values of k for which l does not cross or touch C . | (6 | Question 8 continued | Leave
blank | |----------------------|----------------| Q8 | | (Total 6 marks) | | 9. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable. A curve has equation $$y = \frac{4x^2 + 9}{2\sqrt{x}} \qquad x > 0$$ | Find the x coordinate of the point on the curve at which $\frac{d}{dx}$ | $\frac{dy}{dx} = 0$ | |---|---------------------| |---|---------------------| | Question 9 continued | Leave
blank | |----------------------|----------------| (Total 6 marks) | Q9 | **10.** The curve C_1 has equation y = f(x), where $$f(x) = (4x - 3)(x - 5)^2$$ (a) Sketch C_1 showing the coordinates of any point where the curve touches or crosses the coordinate axes. **(3)** - (b) Hence or otherwise - (i) find the values of x for which $f\left(\frac{1}{4}x\right) = 0$ - (ii) find the value of the constant p such that the curve with equation y = f(x) + p passes through the origin. **(2)** A second curve C_2 has equation y = g(x), where g(x) = f(x + 1) - (c) (i) Find, in simplest form, g(x). You may leave your answer in a factorised form. - (ii) Hence, or otherwise, find the y intercept of curve C_2 **(3)** | uestion 10 continued | | |----------------------|--| 11. A curve has equation y = f(x), where $$f''(x) = \frac{6}{\sqrt{x^3}} + x \qquad x > 0$$ The point P(4, -50) lies on the curve. Given that f'(x) = -4 at P, (a) find the equation of the normal at P, writing your answer in the form y = mx + c, where m and c are constants, (3) (b) find f(x). **(8)** |
 | | |------|--| estion 11 continued | | |---------------------|--| Q | 11 | |-----------------------------|---|----| | (Total 11 marks) | | | | TOTAL FOR PAPER IS 75 MARKS | | | | END END | | | | | | × | | P 6 0 7 9 6 A 0 2 8 2 8 | | | **Question 11 continued**